skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Yutong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wireframe DNA nanocages, an important type of DNA nanomaterials, exhibit exceptional programmability for chemical modifications, along with tunable size and shape. Nevertheless, the impact of their conformational fluctuations on cage design has not been thoroughly explored, despite speculation regarding its influence on biomedical applications. This study marks the first systematic examination of the conformational dynamics of prismatic DNA nanocages through molecular modeling and simulation. By comparing four different DNA nanocage topologies, we uncover design parameter combinations and conditions that facilitate access to varying conformational states. We observe the expansion and contraction of these cages across various topologies, hybridization states, and ionic environments (Mg2+/Na+), with their volumes varying from 15% to 150% of the ideal cage volumes. Our results indicate that the dynamics of DNA cages is influenced by the concentrations of Mg2+ and Na+ ions. Additionally, the flexibility of specific DNA strands can be manipulated, thereby altering the cage volume, through the selective hybridization of the cage edges. Ultimately, the conformational dynamics of DNA nanocages are captured in atomic detail. This study offers valuable modeling tools and methodologies to assist future DNA nanocage design endeavors. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026